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ABSTRACT 

This research proposes awavelet-based multimedia fingerprint scheme and statistical clus-

tering algorithm for collusion detection and identification. 

The use of digital multimedia has steadily increased using mediums like the Internet. En-

cryption is generally used to safeguard content while in transmission, but offers no protection 

against duplication. 

Tracing unauthorized content distributors has become an increasing concern for the media 

industry. Unauthorized duplication, piracy, and illegal redistribution of multimedia content 

account for several billion dollars in losses every year. 

It is important to design reliable investigative techniques against unauthorized duplication 

and propagation, and provide protection in the form of theft deterrence. Some fingerprint 

embedding schemes are robust against single-user modification attacks. However, a new breed 

of attacks, known as collusion attacks, have been used to defeat those underlying schemes. 

These attacks use the combination of multiple fingerprinted copies to create a new version 

where the underlying fingerprint is highly attenuated, becoming untraceable to the colluders. 

This research adopts the use of wavelet transforms and statistical classification techniques 

to effectively identify the set of colluders involved in a collusion attack while maintaining 

low miss rates and false accusation rates. The experimental results show that the solution is 

effective in identifying large colluder sets without the knowledge of the number of colluders 

involved in an attack and the collusion attack used. 
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CHAPTER 1. INTRODUCTION 

The availability of content and the economical costs of electronic distribution have helped 

increase the adoption rate of content stored in electronic format. New digital content, such as 

music, pictures and movies, is being distributed over the internet at a incredibly fast pace. As 

an example of the increase adoption rate of this distribution system, it took less than three 

years for Apple ComputerTMto sell its one billionth song on its internet downloading music 

store, iTunesTM , while it took more than 8 years for McDonald'sTMto sell its one billionth 

burger. (1; 24) 

The global nature of the internet and the numerous content distribution applications such as 

file transfer protocol (FTP), peer-to-peer (P2P) file sharing, and pirate-software download sites 

such as Warez(63) have made it easier for unauthorized users to receive multimedia content. 

As more digital content becomes available through the internet for purchase and distribution, 

the higher the concern for security and unauthorized duplication and proliferation. 

Tracing unauthorized content distributors has become an increasing concern in the media 

industry. According to the Record Industry Association of America, piracy costs the music 

industry alone around x.1.,2 billion dollars each year. (47) The Motion Picture Association of 

America esttmates that unauthorized duplication and distribution of movies will cost them an 

estimated X15 billion over the next 4 years. (21) . Eight people were charged by authorities in 

the United States for providing an illegal online release of the last Star Wars movie, "Episode 

III :Revenge of the Sith" . (3) The movie industry states that illegal distribution issues like 

these are the current cause in the worldwide box office revenue drop of 7.9°~o in 2005 from 

2004. (41) 

Although encryption has been used to safeguard the content while in transmission, it does 
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not offer protection against further unauthorized distribution and duplication. As an example, 

the use of Apple iTu.nesTMmusic software lets an authorized user purchase a song. Using its 

FairPlayTM (62) system, the song is encrypted so that only the user with the specified key is 

able to perform playback. However, this encryption system has been circumvented, with an 

application called Jhymn, (22) which mimics an iTunesTMagent. By mimicking the agent, it 

can download the specified keys from the server and decrypt the song that was purchased 

by the user. Using its additional features, the application can additionally remove traceable 

fingerprints such as the aplD and cprt atoms which identify the multimedia artifact to the 

original purchaser. In this example, this leaves the multimedia audio file available for future 

distribution. 

Digital watermarks were designed to provide a unique method of marking multimedia 

artifacts to determine the original recipient of the content. Watermarks are designed to be 

reliable investigative techniques against tracing unauthorized duplication and propagation, and 

also provide protection in the form of theft deterrence. Some fingerprint embedding schemes 

were developed to be robust against single-user attacks. However, a new breed of attacks 

known as collusion attacl~s, have been used to defeat these underlying schemes. These attacks 

use the combination of multiple fingerprinted copies in order to create a new version where the 

underlying fingerprint is highly attenuated, becoming untraceable to the colluders. Due to the 

highly connected digital world, these attacks have been proven to be highly cost-effective for 

attackers to become untraceable. 

Figure 1.1 shows the general process of fingerprinting a specified multimedia artifact. A 

fingerprint for a user named Alice, who wishes to purchase a legal copy of an artifact, will be 

generated from a specific customer id. This id generates a unique fingerprint sequence that 

will then be embedded into the original multimedia artifact before being received by Alice. 

Therefore, Alice will never have in her possession the original non-fingerprinted multimedia 

artifact. 

Given that Alice may know other users who have also purchased the same multimedia 

artifact, these users can collude together to generate a new copy where the fingerprint has 



www.manaraa.com

3 

Customer ID: Alice 

Fingerprint 
Generator 

Multimedia Artifact 

..10100100. .► 

JJ 

1 Fingerprinted Copy 

~~► 

Alice's Fingerprint embed 

Distribute to ~ Alice 

Figure 1.1 Multimedia artifact fingerprinting 

been removed or attenuated. This copy can then be distributed to other users, which may 

have a relationship with Alice, through peer-to-peer software. The framework of the collusion 

attack described is seen in Figure 1.2. 

Colluders (Leakers) 
AI ice's copy 

Collusion Attack 
(Remove Fingerprints) ~-

Bo b's copy '~ ~ -~ 
~:y 

User X copy 

~► 

~~ 

~y 
Average Attack 

Minimum Attack 
Maximum Attack 
MinMax Attack 

Random Negative Attack 

ti

Colluded Copy 

Figure 1.2 Framework of a collusion attack 

Illegal 
Distribution 

,A
~roSFFhT 

The general problem faced by a digital forensic investigator in determining the original 

illegal distributor of a multimedia artifact is shown in Figure 1.3. Given a suspicious or 

colluded copy, a digital forensic investigator must extract the recoverable fingerprint. Using 

this recovered fingerprint, which may be a partial recovery, they must determine the original 

owner of this multimedia copy. If a direct match cannot be determined, one can suspect that 
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it may be a copy generated through collusion. Using the fingerprint information, the digital 

forensic investigator requires a method for tracing back the conspirators in generating this 

colluded copy. 

recovery Recovered Fingerprint identify 
—►(~) —► . .1010110 0 . . —► 

Suspicious 
or colluded 

copy 
Fingerprint Database 

~.~ ~~ ~~=4.. r~ ~ _. 

Figure 1.3 Colluder set identification problem 

Some colluder detection techniques rely on direct pattern correlation by using orthogonal 

modulation to generate independent fingerprints. (65) This, however, assumes that the entire 

fingerprint can be recovered and the entire set of possible leakers is known. In some variations, 

multiple watermarks are used for every multimedia artifact to increase the probability that an 

investigator can trace the artifact to the sources used for collusion. 

Others methods try to generate all possible combinatorial pairs of possible colluder sets to 

find a highly correlated fingerprint. (59) This methodology requires a large amount of compu-

tational complexity in testing these combinatorial predictions. 

Digital forensic investigators require a method that is cost effective in both implementation 

and time complexity, in order to identify the colluders involved in a collusion attack. In 

addition, they would like to minimize the number of false accusations made against innocent 

individuals not involved in an attack. Identifying these colluders would help aid the media 
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industry in preventing future proliferations from those redistributors. 

The main objective of this research is to find a solution that, given a colluded copy of 

a multimedia artifact, identify the possible set of users involved in an attack without the 

knowledge of the collusion attack used and the total number of colluders involved in that 

collusion attack. In addition, the research aims to also provide a solution that minimizes the 

number of misses and false accusations generated. 

This research has found that the use of wavelet transforms and unsupervised statistical clus-

tering techniques can be used to effectively identify the set of colluders involved in a collusion 

attack while minimizing the number of missed colluders and false accusations generated. 

The research provides a framework divided into three phases: (I) embedding phase, (II) 

recovery phase, and (III) identification phase. The embedding phase will describe the process 

of embedding a digital fingerprint into a multimedia file using the discrete wavelet transform 

(DWT) . The recovery phase will specify the process of recovering the fingerprint in a colluded 

copy. The last phase, will provide details in a new method of identifying colluder sets involved 

in a multimedia collusion attack. The unique contributions of this research are: 

• Full fingerprint recovery is not required. 

• The colluder set is built from joint density observations and not from predictions. 

• Identifying colluder sets becomes independent of the collusion attack used. 

• Independent of the number of colluders involved in the attack. 

An evaluation is performed against the developed solution with three different colluder set 

distributions. Two implementations are proposed in our research: with and without spread 

spectrum watermarking. 

The results demonstrate that colluders can be identified when they employ the use of 

the minimum, maximum and minimun/maximum attacks. The methodology also minimizes 

the number of false accusations incurred by the use of these attacks. Although the random 

negative attack is not completely mitigated, the false accusation rates for the positively and 
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negatively skewed colluder data sets are highly minimized. The average attack seems to be the 

strongest attack against the proposed work. In general, the evaluation results of this research 

demonstrate the solution is highly effective at identifying large number of colluders with the 

collusion attacks tested. 
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CHAPTER 2. A FRAMEWORK FOR MULTIMEDIA FORENSICS 

The proposed fingerprinting and identification scheme can be partitioned into three main 

phases: (I) embedding phase, (II) recovery phase, and (III) identification phase. 

Phase I focuses on using robust embedding methods to embed the watermark information 

into different multimedia artifacts. 

Phase II focuses in performing a recovery of the embedded watermark. In some cases of 

Phase II, only part of the watermark may be recovered due to various alterations attacks. 

Phase III performs the correlation between the embedded watermark and the set of known 

watermarks that correspond to known users. 

Most existing watermarking schemes address issues in Phases I and II. The proposed solu-

tion in this research aims at addressing the issues presented in all three phases. 

2.1 Phase I :Embedding 

There have been various watermark embedding schemes used for multimedia forensics (51) 

(i) least significant bit (LSB) modification embedding, (ii) correlation-based embedding, (iii) 

frequency domain embedding and (iv) wavelet watermarking. 

The least significant bit (LSB) (57) scheme involves replacing the least significant bits 

of audio samples or images with the watermark bits. (50) Though this method is easy to 

implement (25), however, it is easily defeated through any alteration that change the lower 

significant bits in the image. 

The correlation-based technique (CBT) is a spatial embedding technique. It uses a seed key 

to generate apseudo-random noise (PN) sequence that will be applied to the image or audio. 

The strength of the embedded noise is regulated by a gain factor, which increases robustness 
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of the watermark. However, this reduces the quality of the watermarked copy. Although the 

advantage of this spatial technique is that it can be applied to any image or audio, it lacks the 

ability of using sub-Sequent processing to improve resistance to tampering. 

The frequency domain technique scheme uses the discrete cosine transform (DCT) to break 

up the image into a set of frequency bands. (33) The watermark is embedded into the coef-

ficients of the middle frequency bands of an image. This provides the least distortion to the 

quality of the image. (2) This type of embedding is highly robust against compression and noise 

attacks. (51) 

Wavelets have also been proven to be a more effective and robust scheme for watermarking 

multimedia.(37) Using wavelet transforms such as the discrete wavelet transform (DWT), the 

image can be decomposed into a set of sub-bands. (68) These sub-bands represent the approxi-

mation coefficients of the image, which can be combined with the watermark through additive 

embedding. (64) One of the main advantages of wavelet embedding is the ability to use higher 

energy watermarks in regions that are less sensitive to the human visual system (HVS) . This 

allows a higher degree of robustness at little or no impact on quality. (40) 

Additionally, any of these embedding schemes can take some advantages of using spread-

spectrum sequences (15) or orthogonal codes (60) to generate the fingerprint as a pseudo-noise 

(PN) like sequence. These sequences make it harder for attackers to alter the embedded 

fingerprint. However, the issue with using spreading sequences is that they require a larger 

storage space to hold the larger spreaded fingerprint . 

2.2 Phase II :Recovery 

The fingerprint extraction process can be either blind, or non-blind. Anon-blind approach 

requires the original artifact to recover the embedded fingerprint, while a blind approach does 

not. In multimedia forensics, the non-blind fingerprinting scheme is more practical because 

the unique fingerprint is embedded into the multimedia prior to distribution and it is stored 

by the content distributor. 

If the LSB scheme was used on a fingerprinted copy, to perform recovery, the artifact 
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would be analyzed and the lowest significant bits would be extracted to recreate the numerical 

sequences. (50; 57) 

Using the correlation-based technique, the original seed key is required to generate the 

specific PN sequence. (51) This sequence is compared to the recovered sequence from the mul-

timedia content. If the correlation value exceeds a certain threshold, the fingerprint is detected 

and matched. The accuracy of this technique is based on the selected threshold value and the 

percent of fingerprint recovery. 

The frequency domain fingerprint extraction process is similar to its embedding process. 

The DCT is used to decompose the artifact in 8x8 blocks, to recover the middle frequency 

bands. (2) The coefficients representing these bands are extracted and the quantization table is 

analyzed to determine the fingerprint value for that block. (33) After all blocks are processed, 

the fingerprint has been recreated. 

The wavelet watermarking process is similar to the recovery process. The DWT is used to 

decompose the artifact into its corresponding set of sub-bands. (68) These coefficients are then 

compared to the original non-fingerprinted coefficients to retrieve the difference in value. (64) 

This difference in value is the corresponding embedded fingerprint for the sub-band. This is 

processed for all sub-bands which may have an embedded fingerprint. (40) 

If the fingerprint was embedded using spread-spectrum sequences, the extracted signal from 

the multimedia artifact would be despreaded to recreate the original watermark. Figure 5.4 

shows how given a block of five values, the mean can be calculated to recreate the original 

non-spreaded fingerprint value. This is done for all blocks recovered from the colluded copy. 

2.3 Phase III :Identification 

Identification becomes feasible by employing fingerprint correlation methods and statis-

tical classification techniques. Correlation can be computed between the recovered colluded 

fingerprint and the fingerprint of users that had received the original content. 

Identification schemes can be categorized into three types: independent fcngerprint corre-

lation, detector-oriented model and combinatorial (predictive) design. 
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The independent fingerprint identification is a classical method which uses orthogonal mod-

ulation in order to generate fingerprints. A recovered fingerprint from a colluded copy would 

then be correlated using a set of matched filters with all possible known fingerprints in a data 

set. A problem with this methodology is that identification complexity increases substantially 

with larger number of users. 

Judge and Ammar (26) use a hierarchical watermarking system called WHIM. Using wa-

termark verification through intermediary nodes, the geographical location of the potential 

leakers or colluders can be approximated using WHIM. 

Using adetector-oriented model requires the use of more than one multimedia watermarking 

scheme. The system uses a set of watermarks known as detection Keys (30) . If an attacker 

obtains a watermarked copy and a detection key, and uses the key to remove the embedded 

watermark, the attacker will actually be inserting a new fingerprint signal into the new copy. 

Therefore, the corresponding devices can be identified given a colluded copy generated with 

those detection keys. Segmentation and key compression are some related issues with using 

this scheme. 

Some combinatorial detection schemes rely on direct pattern correlation of the colluded 

fingerprint to a combination of colluders (65) . Some of these assume that the entire fingerprint 

was recoverable from the colluded copy. (59) In multimedia leaker identifications, Chu, Qiao, 

and Nahrstedt (10) proposed first generating the entire list of all possible leaker combinations 

(colluder sets) from the set of members receiving the content. When comparing the fingerprint 

recovered from the colluded copy, each combination of colluders is compared to the recovered 

fingerprint. Through the process of elimination, the corresponding colluders are potentially 

found. 

A reference and summary of the notation used in this paper is provided in Table 2.1. Also, 

the terms watermark and fingerprint will have the same definition and be used interchangeably. 

Moreover, images will be used as examples for this research work, however, the solution can 

be applied to other types of multimedia formats. 
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Table 2.1 Notations used in this paper 

Notation Definition 

~' 

'fie (i, ~ 

U 

C 

D 

C' 

A 

B 

Detection Rate 

False Accusation Rate 

Miss Rate 

The original image (non-fingerprinted) 

A colluded or fingerprinted copy 

~-level coef~.cient at component (i, j) of the band-pass image 
~ of sub-band y 

Fingerprint value of the colluded copy F' at component (i, j ) 

Fingerprint or watermark sequence value at component (i, j ) 

Set of correlation values. 

Set of users receiving a fingerprinted version of ~ . CUD = U 

Set of colluders involved in a collusion attack. C n D = ~ 

Set of innocent individuals. 

Set of users identified as colluders. This set can contain both 
real colluders and innocent parties. 

Set of all real colluders identified. A C C', A C C and 
AnD=~ 

Set of users identified as potentially innocent. B = (D — C') U 
(C — C') 

Also called true positive. It is defined as c 

Also called false positive rate. Defined as I CD AI 
I I 

Also called false negative rate. Defined as CCA 
I I 
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CHAPTER 3. THREAT MODEL 

Collusion attacks fall into two main categories: linear and non-linear collusion attacks. (65) 

A study of the effectiveness of these attacks was studied in (29; 71). 

Linear collusion attacks typically synchronize C fingerprinted copies of a multimedia arti-

fact and average out the signal to produce a new copy. This attack is shown as the average 

attach in Table 3.1. In some cases, colluders might use a variant of the average attack by 

adding a small amount of disturbance or Gaussian noise ~ to increase the attenuation of the 

original fingerprint. Another attack involves colluders cutting out and pasting different por-

tions of their copies to create a new one. This is also known as a copg-and-paste attach. The 

cut-and-paste attack is not studied in this research because it has the same effect as averaging 

the collusion, therefore, it becomes analogous to the average collusion attack. (65) 

Non-linear collusion attacks are more of a statistical approach to attenuating or defeating 

the underlying fingerprinting scheme. In most cases, the minimum, maximum and median 

values of each of the C fingerprinted copies are observed and analyzed to create a new less 

traceable copy. The non-linear attacks in Table 3.1 are the minimum, maximum, minmax and 

randomized negative attacks. 

Let C~ out of ~U~ total users collude so that C = {cl , c2, ...cn}, where n = ~C . Next, let 

an image be represented in matrix form. Let ~' (i, j) represent the value of the component 

of a colluded image ~' at pixel location (i, j) . Using ~ C copies, the component of ~' (i, j) is 

generated by combining components of all c E C using any of the attacks in Table 3.1. 

Cl = 
2 1 

3 8 
~ C2 = 

4 2 

5 4 
(3.1) 

An example of two colluders is presented in 3.1. Let cl and c2 be image information 
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Table 3.1 Formulations of collusion attacks in this research 

Attack Formulation 

Average 

Minimum 

Maximum 

Minimum/Maximum (MinMax) 

Randomized Negative 

~xv9 ~2 > ~~ _ E + ~ In=1 ~~n~ ~ 2 ~ ~) ~ I K 

~~ 
zn~2~~) =min({~xk ~~2~~)}kEx) 

,~~ a
~~Z~~) =max ({"~xk~(z~~)}kEx~ 

~minmax (• 
j) 

1 
x Z~ 2 

~r•andneg (• 
j ~ 2, 

(~mZn (Z ~ 
~) + 

max (Z ~ 
~) ) 

~~ zn (i, j) with prob. p 

~"2ax (i, j) with prob. 1 — p 

(approximation coef~'icients) in matrix form of those two colluders. For presentation purposes, 

let the image sizes be 2-by-2. These two users will combine their watermarked copies to create 

a colluded copy ~'. Using the formulation in Table 3.1, each of these collusion attacks is 

described. 

3.1 Average Attack 

This attack takes the corresponding components of every colluder's copy and averages it to 

produce a new value . As an example, component of ~avg (l , 1) — cl (1,1) 
2 

c2 (1,1) = 3. Performing 

this with all the components of cl and c2 a colluded copy ~'avg is obtained. 

~iavg = 
3 1 

4 6 
(3.2) 

This attack, though simple in implementation, may sometimes yield the best effect against 

fingerprinted multimedia. The average attack acts as a signal normalizes. As the number 

of colluded signals being used increases, this weakens every single fingerprint involved in the 
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Average Attack 

Colluded copy 

Figure 3.1 Colluded image using average attack 

collusion and can in turn normalize the signal of the multimedia artifact to be more similar to 

the original, non-fingerprinted artifact. Therefore, the average attack can produce a colluded 

copy that can possibly have better perceptual quality than any fingerprinted signal. 

3.2 Minimum Attack 

This attack takes the corresponding minimum components of the C fingerprinted copies 

used in the attack. In the example used, component ~"22n(1,1) would be calculated by 

mzn(cl (l, l), c2 (1,1)). Performing this for all components of cl and c2, ~jimin is generated. 

~imin = 
2 1 

3 4 

3.3 Maximum Attack 

(3.3) 

This attack takes the corresponding maximum components of the C fingerprinted copies 

used in the attack. In the example used, component 2/~ma~(1,1) would be calculated by 

max (c1(1, 1) , c2 (1,1 }) . Performing this for all components of cl and c2 , ~jimin is generated. 
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Minimum Attack 

Colluded copy 

Figure 3.2 Colluded image using minimum attack 

4 2 
~~max = 

5 8 

Maximum Attack 

Colluded copy 

Figure 3.3 Colluded image using maximum attack 

(3.4) 

This attack is highly similar to the minimum attack previously described. It is a variation 

where the maximum components are only used for the final colluded copy. Therefore, similar 

effects are seen on perceptual quality. 
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3.4 MinMax Attack 

In this attack, the average of the minimum and maximum values of the corresponding C 

copies are used to produce the colluded copy. For this attack, component ~minmax (l, 1) is 

calculated by the average 
~m2n(1,1)+~max(1,1) 

performing this for all components of cl and c2 , 2 

~iminmax is generated. 

~iminmax = 

MinMax Attack 

3 1 

4 6 

Colluded copy 

Figure 3.4 Colluded image using minimum/maximum (MinMax) attack 

(3.5) 

This attack becomes a combination of the minimum or maximum attack paired with the 

average attack. 

3.5 Randomized Negative Attack 

The values of each of the components in the colluded copy will take either the minimum 

or maximum values of the C fingerprinted copies. The value in a component of the colluded 

copy, such as „ljrandneg (1, 1) will be set to the minimum value ~mZn (1, 1) with probability p, 

otherwise it is set to „l,max (l ,1) with probability (1 — p) . For this study, p = 0.5 . Assume 
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„/,min was chosen for ~(l, l) and ~(2, 2), and max for the other components. The resulting 

~irandneg shown in the following 3.6 is only 1 of 16 possible colluded results using this attack. 

~irandneg = 
~mzn (1 ~ 1 ) „/,max (1 ~ 2 ) 

„/jmax(2~ 1) ~min(2~ 2) 

2 2 

5 8 
(3.6) 

This attack adds the largest amount of perceptual noise to the final colluded image. The 

use of four fingerprinted copies in Figure 3.5 are used to generate the colluded copy. The 

additional noise is seen in the final colluded copy. 

Random Negative 
Attack 

Colluded copy 

Figure 3.5 Colluded image using the random negative attack 
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CHAPTER 4. PROBLEM DEFINITION 

There is a growing threat by users who leak multimedia artifacts by using collusion at-

tacks. This type of unauthorized proliferation costs the digital entertainment industry billions 

of dollars every year. (21; 47) The global nature of the Internet and the numerous content dis-

tribution applications such as file transfer protocol (FTP}, peer-to-peer (P2P) file sharing, and 

pirate-software download sites such as Warez(63) have made it easier for unauthorized users to 

receive multimedia content. Digital forensic investigators require a efficient means to identify 

potential leakers of multimedia artifacts to stop future proliferation by those individuals. 

Tracing unauthorized content distributors has become an increasing concern in the media 

industry. According to the Record Industry Association of America, piracy costs the music 

industry alone around ~.~.~ billion dollars each year.(47) The Motion Picture Association of 

America estimates that unauthorized duplication and distribution of movies will cost them an 

estimated X15 billion over the next 4 years. (21) . 

Although encryption has been used to safeguard the content while transmission, it does not 

offer protection against further unauthorized distribution and duplication. Fingerprints were 

developed to determine the possible leakers of the multimedia content. These fingerprints are 

unique for every copy legally distributed of the same multimedia artifact. Due to the highly 

connected digital world, these fingerprints not only have to be robust against a single attacker, 

but new multi-user attacks known as collusion attacl~s. A collusion attack is where more than 

one adversary combines their copy of the multimedia artifact with other multiple marked copies 

to produce a new distinctly unmarked version so that the colluders become untraceable. 

These attacks come in two categories: linear and non-linear collusion attacks. Linear 

collusion attacks typically synchronize C fingerprinted copies of a multimedia artifact and 
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average out the signal to produce a new copy. Non-linear collusion attacks are more of a 

statistical approach to attenuating or defeating the underlying fingerprinting scheme. 

The figures in 3.1, 3.2, 3.3, 3.4 and 3.5 seem similar to the human visual system (HVS) . 

However, each one of those colluded images was generated using a different collusion attack. 

Some colluder identification schemes try to identify colluders by performing using a corre-

lation threshold between each user and the recovered colluded fingerprint. However, for each 

case, the correlation threshold needs to be modified for each given attack in order to account 

for fingerprint attenuation. 

Other identification schemes use combinatorial schemes where all possible sets of colluder 

combinations are created. The fingerprint of these sets are combined for every attack type and 

correlated against the recovered fingerprint. Although it is effective, it requires a large amount 

of complexity and bookkeeping when dealing with a large number of colluders. 

Forensic investigators require a robust framework for identifying the potential colluders 

involved in a collusion attack against multimedia content. In addition they require to minimize 

the probability of missing potential suspects and falsely accusing the innocent. Investigators 

require the ability to traceback to potential colluders without knowing the number of colluders 

involved in an attack or the attack used. 

The main objective in this research is to identify the set of colluders involved in the gener-

ation of a given colluded copy without Knowing the total number of colluders involved and the 

type of collusion attacK used. 

Let C C U, where C is the set of users out of all users in U that decide to collude to 

generate a colluded copy ~' from ~. Let Ci be the set of users from U that were identified as 

probable colluders by any colluder identification scheme. The objective of this research is to 

propose a fingerprinting and identification scheme using wavelet watermarking and statistical 

clustering such that C' ti C while minimizing max C' —C, C — C' 
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CHAPTER 5. PROPOSED FINGERPRINTING AND 

IDENTIFICATION SOLUTION 

5.1 Phase I :Embedding Process 

Fingerprint Sequence Embedding 

Original 

I ~ DWT 

I Filter Bank 

.....  

Level -N 
Coefficients 

Fingerprint 
Sequence 

i 
user id 

Energy 
Computing 

~(i.7) 

1 
i ~ 

alpha 

IDWT 

Figure 5.1 Embedding process using DWT 

Marked 

~~ 

Multimedia artifacts can be represented as discrete signals. As an example, an image can 

be represented as a matrix where each pixel location {i, j } represents a given color value. 

This property enables the use of the Discrete Wavelet Transform (DWT) to easily embed 

fingerprints in image data. (16) The DWT uses a decomposition process to embed fingerprint 

coefficients. (13; 32) This is done using band-pass arrays called filter banl~s. A filter bank 

is a series of high-pass and low-pass filters which partitions the original signal into several 

components called sub-bands. These sub-bands can then be recombined to recreate the original 

signal. The decomposition process can be repeated to more than one level of decomposition 

because the wavelet transform is recursive in nature. At each level, the filter bank passes the 

input through ahigh-pass filter, h [~] , which provides the detail coefficients, and low-pass filter, 

g [~] , which provide the approximation coefficients. 

Figure 5.2 illustrates an ~-level decomposition tree using a filter bank. At every level in 
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the tree, the input is decomposed into low and high frequencies using the filters. Figure 5.3 

presents the idea behind recursive decomposition of an image using four levels. 

g[~] 

h[~] 
 1 

h[c{~] 
2 

—~ 
2 

g[(~] -►Level .Approximation 
 ~ Coefficients 

 r h[ y~] -►Level .~ Detail 
 ~ Coefficients 

Level 2 Detail Coefficients 

 ' Level 1 Detail Coefficients 

Figure 5.2 .~-Level decomposition tree of a filter bank 

Even though there are various robust wavelet-based watermarking methods (40) , the focus 

of this research is to use the constant energy embedding because it requires the least amount 

of computation. This technique is usually chosen as a baseline for comparative studies. (64) 

(5.1) 

Embedding is performed by processing the multimedia artifact with the DWT using ~-levels 

of decomposition. After extracting the corresponding approximation coefficients, an additive 

embedding of the fingerprint is performed using the constant energy embedding scheme shown 

in Equation 5.1. After the fingerprint has been embedded, the inverse DWT is performed to 

recreate the original artifact with the embedded fingerprint. 

Let ~.~ (z, j) be the component of the original image ~ at location {z, j } . Let a be a 

global energy parameter that determines the fingerprint strength. Let f be the pre-computed 

fingerprint sequence. Let ~ specify the decomposition level of the coefficients used to embed 

the fingerprint. The experimentation results found that ~ = 0.1 and ~ = 4 provide enough 

fingerprinting strength while providing acceptable distortion. A general example is presented 

using 5.2 and 5.3. 

~'o = 
12 23 

34 45 

1 0 



www.manaraa.com

22 

0 
Original Image 

DWT 

DWT 

(~ (~J4 

~~ 
~1 
s ~ 1

3 

~3 3 2 

3 2 1 
2 2

2 

1 1 

Figure 5.3 Four Level Image Decomposition. Every ~i is a sub-band 

~' _ 
12 23 

34 45 
~2• 

1 0 

1 1 

14 23 

36 47 
(5.3) 

In addition, spread-spectrum sequences (15) or orthogonal codes (60) can be used to gen-

erate the fingerprint f . Figure 5.4 demonstrates how a fingerprint sequence of values can be 

spread. In the figure, the first value [1] is spread into [l, 1, 0, 1, 0] . The second value [0] would 

be spread as [0, 1, 0, 0, 1] . This would be performed for all the values in the fingerprint sequence. 

Spreading a fingerprint causes the requirement of additional storage space. In Figure 5.4, 

every value is spread into a set of five values. In situations where the original multimedia 

data cannot increase in size, the length of the original fingerprint must be reduced so that the 

spreaded version is able to fit. 

A summary of the embedding process is provided by Algorithm 1. 
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fingerprint sequence 

spreaded fingerprint 
.. 1 1 

1 0 1 

-~ 
m 

~' 

XO R XO R 

0 1 

recovered fingerprint 

0 0 1 0 0 

mean 

i 
1 0 1 

... 

1 1 

... 

0 

XO R 

1 

mean 

1 

Figure 5.4 Example of spreading a fingerprint sequence 

1 ... 

Algorithm 1 embed(, f , c~, .~) 

2: if size (~) < s2ze (f) then 
3: return "error: fingerprint too large" 
4: end if 
5: fori~l torows[~] do 
6: for j ~— 1 to columns [~] do 

8: end for 
9: end for 

11: return ~' 

5.2 Phase II :Recovery Process 

The non-blind extraction process is similar to the embedding process. First, both the 

original and fingerprinted artifacts are processed with the DWT to extract the approximation 

coefficients. Next, the difference between these coefficients is calculated using Equation 5.4 

where the recovered fingerprint is f' . The fingerprint recovery process is shown in Figure 5.5. 

The recovery example from the previous embedding process is presented in Equation 5.5. The 

procedure for recovery is presented in Algorithm 2. 
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Figure 5.5 Extraction and Correlation process using DWT 

(5.4) 

(5.5) 

Algorithm 2 recover(', ~, f , cx, ~) 

l: ~ ~ DWT(~, .~) 

3: for i E--- 1 to rows['] do 
4: for j ~ 1 to columns [~'] do 

6: end for 
7: end for 
8: return f' 

5.3 Phase III :Colluder Identification 

After recovering the colluded fingerprint f', the correlation coefficient is calculated between 

two fingerprints using Equation 5.6, where f is the corresponding fingerprint of a user from 

a known database. Let R(i) be the correlation value between f' and f2 for user i. The set 

R contains all of the correlation values between all users and the colluded fingerprint. The 

correlation value is between -1 and 1. 
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(5.6) 

After having the set of correlation values R, and their corresponding users, a statistical 

clustering technique can be used to determine the colluders involved in the attack. The collu-

sion attack and the number of colluders involved is unknown, therefore, the value of a possible 

correlation threshold parameter cannot be determined. The use of a correlation threshold value 

is not effective. 

This research proposes the use of an iterative ~-means clustering procedure to find possible 

partitions of colluders. This procedure is adopted from the ~-means algorithm. (39) The goal 

of the algorithm is to classify the correlation values within 2 number of clusters. One cluster 

will contain the set of detected colluders, and the other, the set of innocent parties. Since 

it is known that a set of higher correlation values indicates a stronger relationship with the 

colluded fingerprint, the cluster with the highest mean value will be considered the colluder 

set C' . 

The clusters are partitioned by minimizing the Euclidean distance between every correlation 

value R(i) and the means of the its cluster called the centroid. In the proposed variant, 

the initial centroids are not selected randomly as other variations, but are calculated based 

on the mean and standard deviation of the set R. Two centroids, b and c will be set to 

mean (R) ~ stddev (R) , where c > b. 

The scheme places two centroids over the entire data set R. At every iteration, a user 

z is assigned a group (C' or B) based on the shortest distance between R(i) and one of the 

centroids. After all the users have been assigned to a group, the locations of the centroids are 

recalculated based on the mean of members of each of the corresponding groups. This entire 

process is repeated until the locations of the centroids do not change. The final result is the 

set C' which contains the set of possible colluders involved in a collusion attack to form f'. 

The summary of the ~-means algorithm is presented in Algorithm 3. 

A simple working example is shown in Figure 5.6 to present the iterative process. For this 

example, the set R contains points for users { 1, 2, 3, 4}, so that R (1) is the correlation value 
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Algorithm 3 2means(R) 

1: c F— mean(R) --}- stddev(R) 
2: b ~ mean(R) — stddev(R) 
3: repeat 
4: C'~B~—~ 
5: fori~ltoR~do 
6: if R(z) — c~ =min( R(f) —
7: Assign R(i) to set C' 
8: else 
9: Assign R(i) to set B 

10: end if 
11: end for 
12: Clast ~ c 

13: c ~ mean(C') 
14: blast ~ b 

15: b ~ mean(B) 
16: until max (~ c — clast 
17: return C' 

b — blast 

c 

=o 

~R(i) — b then 

Table 5.1 Calculations of first iteration seen in Figure 5.6-(a) 

R(1) = 0.25 R(2) = 0.40 R(3) = 0.65 R(4) = 0.85 
b = 0.20 0.05 0.20 0.45 0.65 
c = 0.35 0.10 0.05 0.30 0.50 

Group Assignment B C' C' C' 



www.manaraa.com

27 
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C 

Figure 5.6 2-means algorithm example: (a) Algorithm after first iteration 
and group assignments based on Table 5.1 (b) Algorithm af-
ter second iteration and group assignments based on Table 5.2 
(c) Algorithm after third iteration and final group assignments 
based on Table 5.3 

of user 1. The initial values of the centroids b and c, for demonstration purposes, are 0.20 and 

0.35 respectively. 

Through the first iteration of the algorithm, every point in R is assigned to the group 

based on the smallest distance to its centroid. Table 5.1, shows the calculations and the group 

assignments after the first iteration. 

After the initial group assignments, the values of the centroids are recalculated to be the 

mean of the members of the group. Therefore, b = 0.25 and c = 0.63. The process is again 

repeated for the second iteration using the new centroids. The locations of the new centroids 

are shown in Figure 5.6 part (b) . The calculations are presented in Table 5.2. At the end of 

the second iteration, it is seen that R(2) has moved from being assigned to C' to B. Again, 

the new centroids are calculated and the process repeated. 
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Table 5.2 Calculations of second iteration seen in Figure 5.6- (b) 

R(1) = 0.25 R(2) = 0.40 R(3) = 0.65 R(4) = 0.85 

b = 0.25 
c = 0.63 

0 
0.38 

0.15 
0.23 

0.40 
0.02 

0.60 
0.22 

Group Assignment B B C' C' 

Table 5.3 Calculations of third iteration seen in Figure 5.6- (c) 

R(1) = 0.25 R(2) = 0.40 R(3) = 0.65 R(4) = 0.85 
b = 0.325 0.075 0.075 0.325 0.525 
c = 0.75 0.5 0.35 0.1 0.1 

Group Assignment B B C' C' 

At the end of the third iteration, the algorithm notices that the locations of the centroids 

do not change. Therefore, the algorithm terminates and set C' contains the potential set of 

colluders because c > b. 

Additionally, the final location of centroids b and c identify the joint density of each cluster. 

As ~c—b » 0, the more distance between the two cluster exists. The better the cluster 

separation, the clearer it is to identify the colluders from the user set. A measurement of cluster 

separation is the silhouette coe, fficient. (27) The silhouette coefficient measures the cohesion and 

separation between identified clusters in a data set using individual points. The centroids will 

be used to determine how well the clusters are separated. Let a be the average distance of a 

centroid to the points in its cluster. Let b be defined as the distance of a centroid to points in 

another cluster. The silhouette coefficient is given by SC = 1 — b . The typical value of SC is 

between 0 and 1, where a value closer to one is preferred. 

If the value of SC is closer to 0, there is a possibility of there only being 1 cluster in 

the data. This cluster would contain either all colluders or all innocent parties. If a forensic 

investigator knows that the user set used in analysis is the entire possible set of users, then he 

can assume the entire set is made up of colluders. 

The algorithm is successful in determining the colluder set C' because colluders cannot 

determine the value of the embedded fingerprint in their multimedia artifact. Therefore, they 

cannot successfully determine which set users to form C such that, corn (f', f 2) = 1, for an 
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innocent user u2. 

Furthermore, the algorithm is highly practical because it treats the correlation values in R 

as random variables, and finds potential relationships based on joint density. Therefore, the 

colluder set is built from observations and not from predictions. Furthermore, the 

identification of sets result in less computation because all possible colluder combinations do 

not have to be tested. 
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CHAPTER 6. EVALUATION AND RESULTS 

6.1 Experimental Setup 

We define a spew pattern as the type of distribution colluders exhibit in relation to the 

entire set of users. The solution will be tested against three data set skew types. In some 

instances, a digital forensic investigator may not have the entire set of users who had received 

the original file. It is important to understand the effects of data set skew patterns against the 

proposed solution. 

EVALUATION DATA SKEW PATTERNS 

■ Number of 
Colluders 

Number of 
Innocent 

Negatively Skewed Neutrally Skewed Positively Skewed 
Colluder Set Colluder Set Colluder Set 

figure 6.1 Types of data set distributions (skews) of colluders 

A neutrally spewed colluder data set will be defined as a set where nearly half of the users 

in the entire data set colluded to generate a colluded copy with a specific collusion attack. 

The most common skew type is a negat2vely spewed colluder data set. This will be defined 

as a set where less than 25°0 of the users were involved in a collusion attack. A few colluders, in 

comparison to the entire set of users receiving the multimedia artifact, will collude to generate 



www.manaraa.com

31 

a new copy. The negatively skewed set will be the closest to a real world scenario where a 

popular multimedia artifact is purchased by many, but yet a few users decide to conspire. 

A positivelg spewed colluder data set will be defined as a set where 75°0 or more users in 

a data set were involved in a collusion attack. This is the least likely type of scenario, where 

most users who obtained the multimedia artifact, conspire to distribute a colluded copy. 

Figure 6.1 shows how the set is partitioned for each s1~ew type given that the entire user 

space is contained in the circle. 

The evaluation will implemented in two versions: with and without spread spectrum wa-

termarking. The spread spectrum watermarking will be implemented using the pseudo-noise 

sequence generator provided in MatLab. Both schemes will be tested independently for each 

skew type. The fingerprints will be a sequence of zero-mean pseudo-randomly generated Gaus-

sian distributed values. Attacks listed in Table 3.1 will be used for evaluation against the 

scheme. 

The solution is evaluated using the Lena. jpg image(34) and MatLab 7.0 software. A total 

set of 400 fingerprinted copies of the image will be created and embedded with the fingerprints 

using the constant energy embedding technique using the Daubechies-6 filter. A total of 200 

colluders will be in set C and a total of 200 innocent individuals will be in set D. A colluded 

copy is generated when two or more colluders from C j oin using an attack from Table 3.1. 

Four levels of decomposition will be used for embedding. The value of cx will be set to 0.10. 

After generating the set of colluded copies, our 2-means algorithm will be ran against 

attacks starting from five colluders and increasing the size. These sets will be compared to the 

true set of colluders to determine our accuracy for each attack type and for each type of skew 

pattern. 

The miss rate and the false accusation rates will be collected from our results for each skew 

pattern. The identification rate will not be presented in the results. It can be calculated for 

any given number of colluders in the results by the equation: 1 -Miss Rate. 
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Figure 6.4 Results of miss rate using spread spectrum with a neutrally 
skewed colluder data set 

Fa
ls

e 
A

cc
us

at
io

n 
R

at
e 

1 

0.9 

0.8 

0.7 

0.6 

0.5 - 

0.4 - 

0.3 - 

0.2 -

0.1 -

0 

~! -- Avg -~- Min -•- Max ~ MinMax -~ RandNeg 

5 30 55 80 105 130 155 180 200 

Number of Colluders 

False Accusation Rate using Spread Spectrum with Neutrally 
Skewed Colluder Set 
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6.2 Neutrally skewed set evaluation 

Figure 6.2 presents the results of the miss rates for a neutrally skewed colluder data set. 

It is seen from the results that the solution works well in identifying colluders involved in a 

minimum, maximum and minmax attacks. As the number of colluders increase, less than 10°0 

of colluders are missed by the algorithm on those attacks. The solution works well against the 

random negative attack where the colluder set size is less or equal to 100 so that we only miss 

1/3 of the colluders involved in an attack. This provides a better than 70°~o probability that a 

person identified was involved in a random negative attack. When the number of colluders is 

higher, the rate begins to degrade and flatten out. The average attack is the strongest against 

our solution. 

The performance of false accusation rates is seen in Figure 6.3. Minimum, maximum and 

minmax attacks are thwarted by the use of the proposed method, regardless of the number of 

colluders involved. The scheme still provides sufficient protection for innocent parties against 

the randomized negative attack. However, the random negative and average attack are the 

strongest in generating false accusations with the solution in this equally weighted data set. 

When implementing spread spectrum fingerprinting, our solution degrades its performance. 

Both the miss and false accusation rates increase in a neutrally colluded set with the use of 

spread spectrum. This effect is seen in Figures 6.4 and 6.5. 

6.3 Negatively skewed set evaluation 

The miss rates in a negatively skewed data set, where the number of colluders is much less 

than the number of individuals in the entire set of users receiving the file, performs similarly 

to the neutrally skewed data set. The minimum, maximum and minmax attacks are thwarted 

by identifying most of the colluders (greater 89°0 of colluders) regardless of the number of 

colluders involved. This is seen in Figure 6.6. 

It is suspect to suggest that due to the larger amounts of innocent individuals in a negatively 

skewed set, a higher false accusation rate is expected. Interestingly in Figure 6.7, there is a 

difference in the performance of protecting innocent individuals in a negatively skewed set. The 
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solution seems to work effectively against minimum, maximum, minmax and random negative 

attacks in comparison with the neutrally skewed data set. Again, it is seen that the average 

attack is the strongest against the solution. 

The spread spectrum implementation of our solution undesirably reduces the identification 

performance, as seen in Figure 6.8. Moreover, as seen in Figure 6.9, spread spectrum substan-

tially increases in accusing almost all of the innocent individuals in the user set. It is clearly 

seen that spread spectrum has not added any significant value to our proposed solution. 

6.4 Positively skewed set evaluation 

Figure 6.10 shows the miss rate performance against a positively skewed colluder set distri-

bution. Figure 6.10 shows, that a similar performance is achieved as the neutrally skewed data 

set, however, there is some adverse effects against the maximum attack. The miss rate for this 

attack is increased almost 15°~o compared to the same attack in the other skew patterns. 

The solution works effectively well against all the attacks in protecting innocent individuals. 
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Figure 6.13 Results of false accusations using spread spectrum with a pos-
itively skewed colluder data set 

Figure 6.11 shows that the false accusation rate with the average attack is attenuated in 

comparison to the other set distributions. It is also seen that the false accusation rates for the 

other attacks (minimum, maximum, minmax and random negative) have been mitigated with 

a large number of colluders . 

Including spread spectrum watermarking in our implementation does not seem to add any 

improvement in detection or reduction in false accusations. In general, it seems that the 

addition of spread spectrum to the solution causes it to degrade in performance independent 

of the skew type. 

6.5 Continuous Increasing Distribution 

The last analysis will use a fixed user set count while increasing the colluders in that set. 

Let C be the set of real colluders, and D the set of innocent individuals, out of a total user set 

U. Given a colluder size C a distribution set U is generated where U C D ~ , where 

D = U — C. The experiment starts with a small C and increased sequentially while updating 
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D = U — C. As an example, we start with 5 colluders (C) and 195 innocent individuals (D) . 

As the number of colluders is increased, the number of innocent individuals in the entire set 

is decreased so that U remains fixed. The results are shown in Figures 6.14 and 6.15. 

It can be seen that as the total number of colluders increases in relation to the total fixed 

set of all users, the colluders gain the advantage of having a larger sample size of fingerprints 

that enable them to thwart leaving any type of statistical signature. 

The figures demonstrate that as the number of colluders increase to the full set size, the 

algorithm starts to degrade in separating the two clusters sets. This is caused due to the final 

distance between the two centroids being reduced. As the number of colluders increase in 

relation to the decrease in innocent users, the joint density of the colluder cluster overwhelms 

the joint density of the innocent cluster. This causes our algorithm to only detect one cluster. 

Using the SC, one can identify the possible set of attacks used on a colluded copy. If SC is 

closer to 1, there is a high probability that the minimum, maximum or minmax attacks were 

used to generate the colluded copy. Therefore, a user identified by the algorithm has a greater 

than 90% probability of being correctly identified. Otherwise, a SC closer to 0 indicates that 

the average or random negative attacks were used and it is hard to determine the certainty of 

that individual. 
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CHAPTER 7. CONCLUSION 

There is an increasing need for digital forensic investigators to identify multimedia content 

distributors involved in a collusion attack to prevent future proliferation by those individuals. 

In this research, the use of wavelet-based watermarking and statistical clustering techniques 

is used to detect and identify colluders involved in a collusion attack. The wavelet-based 

watermarking technique provides a framework of fingerprint embedding that provides a high 

recovery rate. This high recovery rate enables the use of a ~-means statistical clustering 

algorithm to identify colluder sets involved in a collusion attack while minimizing miss rates 

and false accusation rates. The algorithm is effective at identifying the colluder sets in an 

attack without the knowledge of the number of colluders involved and the collusion attack 

used. 

The solution was implemented with and without spread spectrum watermarking. An eval-

uation was performed against the developed solution with three different colluder set distribu-

tions: neutrally, negatively and positively skewed colluder data sets. 

The average attack was found to do the most damage to the proposed solution because 

it acts as a signal normalizer. As the number of colluded signals increases, this weakens 

every single fingerprint involved in the collusion. This, in turn, normalizes the signal of the 

multimedia artifact to be more similar to the original artifact. 

Therefore, the average attack can produce a colluded copy that can possibly have better 

perceptual quality than any fingerprinted signal. The results show that solutions that imple-

ment independent fingerprints that are Gaussian distributed values, the average attack would 

basically generate a copy that would have fingerprints of zero value. This is because the finger-

print generated values are from a Gaussian distribution. Given enough fingerprinted copies, 
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colluders can use the average attack to reduce the colluded fingerprint equal to the mean of 

the distribution. However, the farther away the colluded fingerprint is from the mean of the 

distribution, the better the performance of our solution in identifying colluders in an average 

attack . 

The proposed solution works best for the minimum, maximum and minimum/maximum 

attacks. The is due to the process on how these copies are generated. These attacks take the 

total minimum or maximum values for all components, in an artifact, and for all colluders. It 

becomes highly probable, that every colluder has a set of minimum or maximum component 

values that contribute directly to the final colluded copy. Since the fingerprints are orthogonal, 

there will be a set of component values that directly match a contributing colluder. In general 

terms, these attacks cause the colluders to leave their own signature in the final colluded copy. 

Leaving this signature increases the joint density of the relationship between those colluders 

and colluded copy, so that our 2-means algorithm becomes highly effective. 

Another reason for this effect is the fact that Gaussian distributed values with zero-mean 

and variance were chosen. Since minimum and maximum values create a generated colluded 

copy whose fingerprint is further away than the mean of the distributed values, it becomes easier 

to detect a fingerprint that was not generated through the original process. This is because the 

colluded fingerprint created does not retain the properties of a Gaussian distributed fingerprint. 

These two properties, colluders leaving their signature values and the colluded copy not 

exhibiting Gaussian properties, are the reason why our ,2-means algorithm obtains a high rate 

of effectiveness against the minimum, maximum and minmax attacks. 

Our results show that spread spectrum watermarking causes degradation in identifying 

colluders and increases false accusation rates. Spread spectrum sequences generate a new type 

of noise-like sequence from the original watermark. This new embedded watermark is larger 

than the original. This property, coupled with any of the collusion attacks, causes a higher 

change in the watermark values in the final generated colluded copy. The main disadvantage 

of using the spread spectrum watermarking is that because the signal from a colluded copy 

is despreaded after extraction, causing it to be reduced in size, the fingerprint becomes part 
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of a smaller fingerprint value space. This causes an increase in highly correlated fingerprints 

between innocent and colluders. Therefore, spread spectrum watermarking is not recommended 

as part of a solution that uses unsupervised statistical classification. 

Our algorithm can be improved with an additional change. The algorithm should addition-

ally check the ending distance of the two centroids. Our algorithm relies on finding statistical 

clusters within the given data set. However, if the final location of the two centroids is similar, 

one may conclude that there are no two clusters in the data set. Therefore, the entire set is 

either composed of mostly all innocent individuals or mostly all colluders. If this is the case, 

a threshold methodology can be used to further analyze and identify the type of scenario. 

The main advantage of our algorithm is that it builds the colluder set from joint density 

observations and not set predictions. This research uses statistical classification techniques to 

find possible unknown relationships or signatures between the colluded copy and the finger-

printed copies of suspicious users. The use of statistical classification techniques coupled with 

strong fingerprinting schemes, such as wavelets, enable a new type of colluder identification 

method for digital forensic investigators. This methodology aids in finding colluders even if 

they use a new breed of collusion attack. 

The results demonstrate that colluders can be identified when they employ the use of 

the minimum, maximum and minimun/maximum attacks. The methodology also minimizes 

the number of false accusations incurred by the use of these attacks. Although the random 

negative attack is not completely mitigated, the false accusation rates for the positively and 

negatively skewed colluder data sets are highly minimized. The average attack seems to be 

the strongest attack against the proposed work. In general, the evaluation results of this 

research demonstrate the solution is highly effective at identifying large colluder sets against 

the collusion attacks tested and can easily be implemented in current fingerprinting frameworks. 
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APPENDIX A. MATLAB SOURCE CODE 

The following is the source code that was used in the evaluation of the proposed scheme. 

A.1 setup.m 

X = imread(' lena. jpg') ; 

X =double (X) ; %perform operations without warnings 

total = input ('Set Total Number of Copies : ') ; step = input ('Set 

Collusion step size: '); dwtmode('per'); 

disp (sprintf ('Creating fingerprinted copies ... %d' ,total)) ; 

C=generate (X, total) ; %colluders images/watermarks 

I=generate (X, total) ; %innocent images/watermarks 

A.2 generate.m 

function [aW] =genereate (X, k) ; 

forn= 1:k 

disp (sprintf ('Generating copy (%d) ... ' , n)) ; 

[aW (n) . im, aW (n) . wm] = wavemark (X) ; 

end 

return; 

A.3 generate.m 

function [cent_b, cent_c] =calc_centroids (Cr, Ir) ; 
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%we divide by 100.0, (to offset MatLab rounding problem) 

cent_c =mean ([Cr Ir]) + (std ([Cr Ir]) /100.0) ; 

cent_b = mean([Cr Ir]) - (std([Cr Ir] )/100.0) ; return; 

A.4 wavemark.m 

function [W, w] =wavemark (X) ; 

[M, N] = size (X) ; alpha = . 1; 

 start of encoder 

set dwtmode to periodization so that size(cA)=size(cH)=size(cV)=size(cD)=ceil(sx/2) 

dwtmode ('per'); 

perform 4-level Daubechies-6 wavelet decomposition 

[C, S] = wavedec2 (double (X) , 4, ' db6') ; 

watermark creation 

[cH4, cV4, cD4] = detcoef 2 ('all' , C, S, 4) ; 

calc number of lowpass approximation coef f s 

randn('state' , sum(100*clock)) ; 

w = randn (1, M*N -prod (size (cH4))) ; % 1x65280 watermark for r=4 resolution 

watermark insertion 

highpass = C (prod (size (cH4)) +1 : end) ; lowpass 

C(1:prod(size (cH4))) ; 
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mod_highpass = highpass + (alpha*w) ; % additive formula 

mod_C = [lowpass mod_highpass] ; 

catenate modified highpass with untouched lowpass coeff 

Inverse 4-level Daubechies-6 wavelet decomposition 

W = waverec2(mod_C,S,'db6'); 

%W = waverec2 (C, S, ' db6') ; 

return; 

A.5 wavemark_ext.m 

function u=wavemark_ext (0 , W) ; 

[M, N] = size (0) ; [wM, wN] = size (W) ; alpha = . 1; 

set dwtmode to periodization so that 

%size (cA)=size (cH)=size (cV)=size (cD)=ceil (sx/2) 

dwtmode ('per'); 

perform 4-level Daubechies-6 wavelet decomposition 

[C, S] =wavedec2 (double (0) , 4, ' db6') ; [C_est , S_est] _ 

wavedec2 (double (W) , 4, ' db6') ; 

watermark creation 

[cH4 , cV4 , cD4] = det coef 2 ('all' , C , S , 4) ; 

calc number of lowpass approximation coeff s 
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highpass_est = C_est(prod(size(cH4))+1:end); highpass = 

C (prod (size (cH4)) +1: end) ; 

u = (highpass_est -highpass) ./ alpha; return; 

inverse formula 

A.6 avgattk.m 

function [tImg] =avgattk(k,X) ; 

%Takes as input a series of k copies 

%of X structures that will be combined linearly 

[m, n] =size (X) ; [img_m, img_n] =size (X (1) . im) ; tImg = 

zeros(img_m,img_n); 

for t = l:k 

tImg = tImg + X(t).im; 

end 

tImg = tImg / n; return; 

A.7 minattk.m 

function [tImg] =maxattk(k,X) ; [m,n] =size (X) ; [img_m, img_n] _ 

size(X(1) . im) ; tImg = X(1) . im; 

for i = 1:n 

tImg = min(tImg,X(i).im); 

end 

return; 
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A.8 maxattk.m 

function [t Img] =maxattk (k, X) ; 

[m, n] = size (X) ; 

[img_m,img_n] = size(X(1).im); tImg = X(1).im; 

for i = l:n 

tImg = max(tImg,X(i) . im) ; 

end 

return; 

A.9 minmaxattk.m 

function [t Img] =minmaxattk (k, X) ; 

%Takes as input a series of k copies of X structures that will be combined linearly 

[m, n] = size (X) ; [img_m, img_n] = size (X (1) . im) ; tImg = 

zeros(img_m,img_n); tImg_1 = zeros(img_m,img_n); tImg_2 = 

zeros(img_m,img_n); 

tImg_1 = minattk(k,X); tImg_2 = maxattk(k,X); 

tImg = (tImg_i + tImg_2) /2; 

return; 
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A.10 randneg.m 

function [tImg]=randneg(k,X) ; 

%Takes as input a series of k copies of structures X that will be combined linearly 

[m, n] =size (X) ; Cimg_m, img_n] =size (X (1) . im) ; t Img = 

zeros(img_m,img_n); 

randn('state' , sum(100*clock)) ; tImg = X(1) . im; 

i=1; j=1; 

for i = i:img_n 

for j = 1: img_m 

p=randn(); 

if(p > 0) 

for t = i:k 

tImg(i, j) =max (tImg(i, j) , F (i, j)) ; 

end; 

else 

for t = i:k 

tImg(i,j) = min(tImg(i,j), F(i,j)); 

end 

end; 

%t Img =max (t Img X (t) . im) ; 

end 
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end 

return; 

A.11 test_avgattk_kmeans.m 

%now I have 2 K f fingerprinted copies of Lena 

%Trying Geometric linear attack. 

disp (sprintf ('Running attacks')) ; 

total - 5 (cause we start at 5, but we want to include (5) , so 

% _5+ ~ = _4

TP =zeros (1, (total/step) +1) ; FP =zeros (1, (total/step) +1) ; FN = 

zeros (1, (total/step) +1) ; cCorr =zeros (1, (total/step) +1) ; iCorr = 

zeros (1, (total/step) +1) ; dCorr =zeros (1, (total/step) +1) ; allCorr 

= zeros (1, (total/step) +1) ; index = [ (5 : step :total) total] ; counter 

= 1; f or n = [index] 

Cr = zeros(1,n); Ir =zeros(1,n); 

disp(sprintf('Generating collusion copy with n = %d',n)); 

K = avgattk (n, C) ; 

extK = wavemark_ext (X, K) ; %extract watermark 

for colluder = i : n 

r = corr2 (extK, C (colluder) . wm) ; %corr between (print and colluder 

%disp (sprintf ('Colluder %d of %d : corr %f ' , colluder, n, r)) ; 
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Cr(colluder) = r; 

end 

for innocent = i:n 

r = corr2 (extK, I (innocent) . wm) ; %corr between fprint and colluder 

%disp (sprintf ('Innocent %d of %d : corr %f ' ,innocent , n, r)) ; 

Ir(innocent) = r; 

end 

rT = [Cr' Ir' ] ; %put colluder group first , then innocent 

%so, 1 -> n is colluders, and n+1->end is innocent always 

[cent_b,cent_c] = calc_centroids(Cr,Ir); [IDX, centroids] _ 

kmeans (rT, 2, 'start' , [cent_b cent_c]) ; 

if (centroids (1) > centroids (2) ) 

%colluder group is 1 

ident =COUNT (IDX (1: n) , ' ==1') ; %true positives - identifications 

f alseacc =COUNT (IDX (n+1: end) , ' ==i') ; %false positives -false accusations 

misses = COUNT(IDX(i:n), '==2'); %true positives - identifications 

else 

%colluder group is 2 

ident =COUNT (IDX (1: n) , ' ==2') ; %true positives - identifications 

f alseacc =COUNT (IDX (n+1: end) , ' ==2') ; %false positives -false accusations 

misses = COUNT(IDX(1:n), '==1'); %true positives - identifications 

end 

TP(counter) = ident/n; 

FN(counter) =misses/n; %misses 
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FP (counter) = f alseacc/n; %wrongly accused 

%allCorr (counter) _ [Cr' , Ir' ] ; 

cCorr (counter) =mean (Cr) ; iCorr (counter) =mean (Ir) ; 

dCorr (counter) = abs (mean(Cr)) - abs (mean(Ir)) ; 

disp sprintf ('TruePositives 

disp (sprintf (' FalseNegatives 

disp (sprintf (' FalsePositives 

counter = counter + 1; 

end 

%d',TP(counter))); 

%d',FN(counter))); 

A.12 test_minattk~means.m 

%now I have 2 K fingerprinted copies 

%Trying Geometric linear attack. 

disp (sprintf ('Running attacks')) ; 

of Lena 

total - 5 (cause we start at 5, but we want to include (5) , so 

% _5 + 1 = _4

TP =zeros (i , (total/step) +1) ; FP 

zeros(1, (total/step)+1); cCorr = 

zeros(i,(total/step)+1); dCorr = 

= zeros (1, (total/step) +1) ; index 

= 1; f or n = [index] 

Cr = zeros(i,n); Ir = zeros(i,n); 

= zeros (1, (total/step) +i) ; FN = 

zeros(1,(total/step)+1); iCorr = 

zeros (1, (total/step) +1) ; allCorr 

_ [ (5 : step :total) total] ; counter 

disp(sprintf('Generating collusion copy with n = %d',n)); 
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K = minattk(n, C) ; 

extK = wavemark_ext (X, K) ; %extract watermark 

for colluder = i:n 

r = corr2 (extK, C (colluder) . wm) ; %corr between fprint and colluder 

%disp (sprintf ('Colluder %d of %d : corr %f ' , colluder, n, r)) ; 

Cr(colluder) = r; 

end 

for innocent = i:n 

r = corr2 (extK, I (innocent) . wm) ; %corr between fprint and colluder 

%disp (sprintf ('Innocent %d of %d : corr %f ' ,innocent , n, r)) ; 

Ir(innocent) = r; 

end 

rT = [Cr' Ir' ] ; %put colluder group first , then innocent 

%so, 1 -> n is colluders, and n+1->end is innocent always 

[cent_b,cent_c] = calc_centroids(Cr,Ir); [IDX, centroids] _ 

kmeans (rT, 2, 'start' , [cent_b cent_c]) ; 

if (centroids (1) > centroids (2) ) 

%colluder group is 1 

ident =COUNT (IDX (1: n) , ' ==1') ; %true positives - identifications 

f alseacc =COUNT (IDX (n+1: end) , ' ==1') ; %false positives -false accusations 

misses = COUNT(IDX(1:n), '==2'); %true positives - identifications 

else 
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%colluder group is 2 

ident =COUNT (IDX (1: n) , ' ==2') ; %true positives - identifications 

f alseacc =COUNT (IDX (n+1: end) , ' ==2') ; %false positives -false accusations 

misses =COUNT (IDX (1: n) , ' ==1') ; %true positives -identifications 

end 

TP(counter) = ident/n; 

FN(counter) =misses/n; %misses 

FP (counter) = f alseacc/n; %wrongly accused 

%allCorr (counter) _ [Cr' , Ir' ] ; 

cCorr(counter) = mean(Cr); iCorr(counter) = mean(Ir); 

dCorr (counter) =abs (mean (Cr)) -abs (mean (Ir)) ; 

disp(sprintf('TruePositives %d',TP(counter))); 

disp(sprintf('FalseNegatives: %d',FN(counter))); 

disp(sprintf('FalsePositives: %d',FP(counter))); 

counter =counter + 1; 

end 

A.13 test _maxattk~means. m 

%now I have 2 K f fingerprinted copies of Lena 

%Trying Geometric linear attack. 

disp (sprintf ('Running attacks')) ; 

total - 5 (cause we start at 5, but we want to include (5) , so 

%_5+1=_4 
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TP =zeros (i , (total/step) +1) ; FP 

zeros(i,(total/step)+i); cCorr = 

zeros (1, (total/step)+1); dCorr = 

= zeros (i , (total/step) +i) ; index 

= i ; f or n = [index] 

Cr =zeros(i,n); Ir =zeros(1,n); 

= zeros (1, (total/step) +1) ; FN = 

zeros (1, (total/step) +i) ; iCorr = 

zeros (1, (total/step) +1) ; allCorr 

_ [ (5 : step :total) total] ; counter 

disp (sprintf ('Generating collusion copy with n = %d' , n)) ; 

K = maxattk (n, C) ; 

extK = wavemark_ext (X, K) ; %extract watermark 

for colluder = i:n 

r = corr2 (extK, C (colluder) . wm) ; %corr between fprint and colluder 

%disp (sprintf ('Colluder %d of %d: corr %f ' , colluder, n, r)) ; 

Cr(colluder) = r; 

end 

for innocent = i:n 

r = corr2 (extK, I (innocent) . wm) ; %corr between fprint and colluder 

%disp (sprintf ('Innocent %d of %d : corr %f ' ,innocent , n, r)) ; 

Ir(innocent) = r; 

end 

rT = [Cr' Ir' ] ; %put colluder group first , then innocent 

%so, i -> n is colluders, and n+1->end is innocent always 

[cent _b,cent_c] = calc_centroids(Cr,Ir); [IDX,centroids] _ 
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kmeans (rT, 2, 'start' , [cent_b cent_c]) ; 

if (centroids (1) > centroids (2) ) 

%colluder group is 1 

ident = COUNT(IDX (i : n) , ' ==1') ; %true positives - identifications 

f alseacc =COUNT (IDX (n+1: end) , ' ==1') ; %false positives -false accusations 

misses = COUNT (IDX(1: n) , ' ==2') ; %true positives - identifications 

else 

%colluder group is 2 

ident =COUNT (IDX (1: n) , ' ==2') ; %true positives - ident if i cat ions 

f alseacc =COUNT (IDX (n+1: end) , ' ==2') ; %false positives -false accusations 

misses =COUNT (IDX (1: n) , ' ==1') ; %true positives - identifications 

end 

TP (counter) = ident/n; 

FN(counter) =misses/n; %misses 

FP (counter) = f alseacc/n; %wrongly accused 

%allCorr (counter) _ [Cr' , Ir' ] ; 

cCorr(counter) = mean(Cr); iCorr(counter) = mean(Ir); 

dCorr (counter) =abs (mean (Cr)) -abs (mean (Ir)) ; 

disp(sprintf('TruePositives %d',TP(counter))); 

disp (sprintf (' FalseNegatives : %d' , FN (counter))) ; 

disp (sprintf (' FalsePositives : %d' , FP (counter))) ; 

counter =counter + 1; 

end 
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A.14 test_minmaxattk_kmeans.m 

%now I have 2 K f fingerprinted copies of Lena 

%Trying Geometric linear attack. 

disp (sprintf ('Running attacks')) ; 

total - 5 (cause we start at 5, but we want to include (5) , so 

%_5+1=_4 

TP =zeros (1, (total/step) +1) ; FP =zeros (1, (total/step) +1) ; FN = 

zeros (1, (total/step) +1) ; cCorr =zeros (1, (total/step) +1) ; iCorr = 

zeros (1, (total/step) +1) ; dCorr =zeros (1, (total/step) +1) ; allCorr 

= zeros (1, (total/step) +1) ; index = [ (5 : step :total) total] ; counter 

= i ; f or n = [index] 

Cr = zeros(i,n); Ir = zeros(i,n); 

disp(sprintf('Generating collusion copy with n = %d',n)); 

K = minmaxattk (n, C) ; 

extK = wavemark_ext (X, K) ; %extract watermark 

for colluder = 1: n 

r = corr2 (extK, C (colluder) . wm) ; %corr between fprint and colluder 

%disp (sprintf ('Colluder %d of %d : corr %f ' , colluder, n, r)) ; 

Cr(colluder) = r; 

end 

for innocent = 1: n 
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r = corr2 (extK, I (innocent) . wm) ; %corr between fprint and colluder 

%disp (sprintf ('Innocent %d of %d : corr %f ' ,innocent , n, r)) ; 

Ir(innocent) = r; 

end 

rT = [Cr' Ir' ] ; %put colluder group first , then innocent 

%so, 1 -> n is colluders, and n+1->end is innocent always 

[cent_b,cent_c] = calc_centroids(Cr,Ir); [IDX,centroids] _ 

kmeans (rT, 2, 'start' , [cent_b cent_c]) ; 

if (centroids (1) > centroids (2) ) 

%colluder group is 1 

ident = COUNT(IDX (1: n) , ' ==1') ; %true positives - identifications 

f alseacc =COUNT (IDX (n+1: end) , ' ==1') ; %false positives -false accusations 

misses = COUNT(IDX(i:n), '==2'); %true positives - identifications 

else 

%colluder group is 2 

ident = COUNT(IDX(i:n), '==2'); %true positives - identifications 

f alseacc =COUNT (IDX (n+1: end) , ' ==2') ; %false positives -false accusations 

misses = COUNT(IDX(1:n), '==1'); %true positives - identifications 

end 

TP(counter) = ident/n; 

FN (counter) =misses/n; %misses 

FP (counter) = falseacc/n; %wrongly accused 

%allCorr (counter) _ [Cr' , Ir' ] ; 

cCorr (counter) =mean (Cr) ; iCorr (counter) =mean (Ir) ; 
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dCorr (counter) =abs (mean (Cr)) - abs (mean (Ir)) ; 

disp(sprintf('TruePositives 

disp(sprintf('FalseNegatives: 

disp (sprintf (' FalsePositives 

counter =counter + 1; 

end 

A.15 test_randnegattk_kmeans.m 

%now I have 2 K fingerprinted copies of Lena 

%Trying Geometric linear attack. 

disp (sprintf ('Running attacks')) ; 

total - 5 (cause we start at 5, but we want to include (5) , so 

%_S+I=_4 

TP =zeros (1, (total/step) +1) ; FP =zeros (1, (total/step) +1) ; FN = 

zeros (1, (total/step) +1) ; cCorr =zeros (1, (total/step) +i) ; iCorr = 

zeros (1, (total/step) +1) ; dCorr =zeros (1, (total/step) +1) ; allCorr 

= zeros (1, (total/step) +1) ; index = [ (5 : step :total) total] ; counter 

= 1; f or n = [index] 

Cr =zeros(i,n); Ir = zeros(1,n); 

disp(sprintf('Generating collusion copy with n = %d',n)); 

K = randnegattk (n, C) ; 

extK = wavemark_ext (X, K) ; %extract watermark 
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for colluder = i:n 

r = corr2 (extK, C (colluder) . wm) ; %corr between fprint and colluder 

%disp (sprintf ('Colluder %d of %d : corr %f ' , colluder, n, r)) ; 

Cr(colluder) = r; 

end 

for innocent = i:n 

r = corr2 (extK, I (innocent) . wm) ; %corr between fprint and colluder 

%disp (sprintf ('Innocent %d of %d : corr %f ' ,innocent , n, r)) ; 

Ir(innocent) = r; 

end 

rT = [Cr' Ir' ] ; %put colluder group first , then innocent 

%so, 1 -> n is colluders, and n+1->end is innocent always 

[cent_b,cent_c] = calc_centroids(Cr,Ir); [IDX, centroids] _ 

kmeans (rT, 2, 'start' , [cent_b cent_c]) ; 

if (centroids (1) > centroids (2) ) 

%colluder group is i 

ident = COUNT(IDX(1:n) , '==1') ; %true positives - identifications 

f alseacc =COUNT (IDX (n+i :end) , ' ==1') ; %false positives -false accusations 

misses = COUNT(IDX(i:n), '==2'); %true positives - identifications 

else 

%colluder group is 2 

ident = COUNT(IDX(i:n), '==2'); %true positives - identifications 

f alseacc =COUNT (IDX (n+1: end) , ' ==2') ; %false positives -false accusations 

misses = COUNT(IDX(i:n), '==1'); %true positives - identifications 
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end 

TP(counter) = ident/n; 

FN(counter) = misses/n; %misses 

FP (counter) = f alseacc/n; %wrongly accused 

%allCorr (counter) _ [Cr' , Ir' ] ; 

cCorr(counter) = mean(Cr) ; iCorr(counter) = mean(Ir) ; 

dCorr (counter) = abs (mean(Cr) ) - abs (mean (Ir)) ; 

disp (sprintf (' TruePositives %d' , TP (counter))) ; 

disp (sprintf (' FalseNegatives : %d' , FN (counter))) ; 

disp(sprintf('FalsePositives: %d',FP(counter))); 

counter = counter + 1; 

end 

A.16 batchrun.m 

setup 

disp(' '); disp('Average Attack'); 

test_avgattk_kmeans 

avg.TP = TP'; 

avg.FP = FP'; 

avg.FN = FN'; 

avg.cCorr = cCorr'; 

avg.iCorr = iCorr'; 

avg.dCorr = dCorr'; 
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disp(' '); disp('Min Attack'); 

test minattk kmeans 

min.TP = TP'; 

min.FP = FP'; 

min.FN = FN'; 

min.cCorr = cCorr'; 

min.iCorr = iCorr'; 

min.dCorr = dCorr'; 

disp (' ' ) ; disp ('Max Attack') ; 

test_maxattk_kmeans 

max.TP = TP'; 

max.FP = FP'; 

max.FN = FN'; 

max.cCorr = cCorr'; 

max.iCorr = iCorr'; 

max.dCorr = dCorr'; 

disp (' ' ) ; disp (' MinMax Attack') ; 

test minmaxattk kmeans 

minmax.TP = TP'; 

minmax.FP = FP'; 

minmax.FN = FN'; 
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minmax.cCorr = cCorr'; 

minmax.iCorr = iCorr'; 

minmax.dCorr=dCorr'; 

disp (' ' ) ; disp (' RandNeg Attack') ; 

test_randnegattk_kmeans 

randneg . TP = TP' ; 

randneg . FP = FP' ; 

randneg . FN = FN' ; 

randneg.cCorr = cCorr'; 

randneg.iCorr = iCorr'; 

randneg.dCorr=dCorr'; 

index_v = [ (5 : st ep :total) total] ' ; 

ALL.TP = [index_v, avg.TP, min.TP, max.TP, minmax.TP, randneg.TP]; 

ALL.FP = [index_v, avg.FP, min.FP, max.FP, minmax.FP, randneg.FP]; 

ALL.FN = [index_v, avg.FN, min.FN, max.FN, minmax.FN, randneg.FN]; 

ALL.cCorr = [index_v, 

avg.cCorr, 

min.cCorr, 

max.cCorr, 

minmax.cCorr, 

randneg . cCorr] ; 
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ALL.iCorr = [index_v, 

avg.iCorr, 

min.iCorr, 

max.iCorr, 

minmax.iCorr, 

randneg. iCorr] ; 

ALL.dCorr = [index_v, 

avg.dCorr, 

min.dCorr, 

max.dCorr, 

minmax.dCorr, 

randneg . dCorr] ; 

disp('Exporting to Excel file wave_results.xls'); 

xlswrite('wave_results.xls', ALL.TP, 'True Positive','A2'); 

xlswrite('wave_results.xls', ALL.FP, 'False Positive','A2'); 

xlswrite('wave_results.xls', ALL.FN, 'False Negative','A2'); 
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